Waffle slabs designed as two-way slabs (standard moulds)

ADVANTAGES

- Medium to long spans
- Lightweight
- Profiles may be expressed architecturally, or used for heat transfer

Introducing voids to the soffit reduces dead weight and these deeper, stiffer floors permit longer spans which are economic for spans between 9 and 14 m. The saving of materials tends to be offset by complication in site operations.

Standard moulds are 225, 325 and 425 mm deep and are used to make ribs 125 mm wide on a 900 mm grid. Toppings are between 50 and 150 mm thick.

The chart and data assume surrounding and supporting downstand beams, which should be subject to separate consideration, and solid margins. Both waffles and downstand beams complicate formwork.

DISADVANTAGES

- Higher formwork costs than for other slab systems
- Slightly deeper members result in greater floor heights
- Slow. Difficult to prefabricate reinforcement

SPAN:DEPTH CHART

DESIGN ASSUMPTIONS									
SUPPORTED BY	BEAMS in two orthogonal directions. Refer to beam charts and data to estimate sizes, etc.								
DIMENSIONS	Square panels, minimum of two spans x two bays. Ribs 125 mm wide @ 900 mm cc. Moulds 225, 325 or 425 mm deep. Topping 100 to 150 mm. Rib/solid intersection at 900 + 125/2 from centreline of support.								
REINFORCEMENT	Maximum bar sizes in ribs: 2T25B, 2T20T (in top of web) and R8 links. 25 mm allowed for A142 or A193 mesh (@ 0.12%) in topping. 10% allowed for wastage and laps. f₅ may have been reduced.								
LOADS	SDL of 1.50 kN/m ² (finishes etc) included. Ultimate loads to internal beams assume two adjacent corner panels. Loads are applicable as a udl over 75% of the beam's length. Self weight used accounts for 5:1 slope to ribs, solid edges as described above and topping as inferred.								
CONCRETE	C35, 24 kN/m ³ , 20 mm aggregate.								
FIRE & DURABILITY	Fire resistance 1 hour; mild exposure.								
DESIGN	Design based on corner panels. Single span (both ways) assumes torsional restraint.								
SINGLE SPAN, m	7.2	8.1	9.0	9.9	10.8	11.7	12.6	13.5	14.4
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	325	325	350	375	435	525	565		
$IL = 5.0 \text{ kN/m}^2$	325	325	365	425	470	535			
$IL = 7.5 \text{ KN/m}^2$ $II = 10.0 \text{ kN/m}^2$	325	350 375	425	440	525 540				
					540				
ULTIMATE LOAD TO SUPPO	JRTING BE	AIVIS, INTERI n/a (32)	NAL (END), n/a (38)	KIV/M n/a (45)	n/a (/19)	n/a (59)	n/a (69)		
$II = 5.0 \text{ kN/m}^2$	n/a (23)	n/a (32)	n/a (50)	n/a (43)	n/a (45)	n/a (55)	11/4 (05)		
$IL = 7.5 \text{ kN/m}^2$	n/a (48)	n/a (56)	n/a (64)	n/a (72)	n/a (83)	11/4 (70)			
$IL = 10.0 \text{ kN/m}^2$	n/a (57)	n/a (69)	n/a (76)	n/a (89)	n/a (99)				
REINFORCEMENT, ka/m² (k	(a/m^3)								
$IL = 2.5 \text{ kN/m}^2$	8 (24)	12 (35)	15 (44)	19 (51)	18 (42)	16 (31)	21 (38)		
$IL = 5.0 \text{ kN/m}^2$	11 (33)	18 (56)	20 (53)	17 (40)	21 (45)	22 (40)			
$IL = 7.5 \text{ kN/m}^2$	15 (45)	19 (55)	16 (37)	21 (48)	20 (37)				
$IL = 10.0 \text{ kN/m}^2$	19 (57)	20 (53)	20 (46)	22 (47)	23 (42)				
MULTIPLE/TWO SPAN, m	7.2	8.1	9.0	9.9	10.8	11.7	12.6	13.5	14.4
THICKNESS, mm									
$IL = 2.5 \text{ kN/m}^2$	325	325	325	325	350	425	450	525	565
$IL = 5.0 \text{ kN/m}^2$	325	325	325	325	350	425	450	525	565
$IL = 7.5 \text{ kN/m}^2$	325	325	325	350	425	425	475 525	575	
		ANAS INITED		kN/m	120	100	020		
$IL = 2.5 \text{ kN/m}^2$	66 (23)	75 (26)	83 (29)	91 (32)	106 (37)	122 (43)	139 (49)	158 (56)	184 (65)
$IL = 5.0 \text{ kN/m}^2$	89 (31)	100 (35)	111 (39)	122 (43)	139 (49)	158 (55)	177 (62)	200 (70)	228 (80)
$IL = 7.5 \text{ kN/m}^2$	111 (39)	124 (44)	138 (49)	154 (54)	180 (63)	193 (68)	226 (79)	244 (86)	
$IL = 10.0 \text{ kN/m}^2$	133 (47)	149 (52)	166 (58)	189 (66)	212 (74)	237 (83)	264 (93)	300 (105)	
REINFORCEMENT, kg/m² (k	(g/m ³)								
$IL = 2.5 \text{ kN/m}^2$	5 (16)	7 (20)	8 (25)	10 (32)	13 (37)	12 (27)	15 (32)	14 (27)	17 (30)
$IL = 5.0 \text{ kN/m}^2$	7 (21)	9 (26)	11 (34)	15 (46)	19 (55)	16 (37)	20 (44)	19 (36)	22 (39)
$IL = 7.5 \text{ kN/m}^2$	8 (26) 10 (21)	11 (33)	14 (44) 19 (EE)	19 (58)	21 (55)	20 (48)	22 (47)	23 (43)	
$IL = 10.0 \text{ km/m}^2$	10 (51)	15 (40)	10 (55)	21 (59)	10 (45)	22 (50)	21 (41)	Z4 (4Z)	
$\frac{DESIGN NOTES}{II - 2 E k N/m^2}$		$a = q_k$	> 1.25 g_k	$b = q_k$	> 5 KN/m ²	e = designed links may be required in ribs			
$IL = 2.5 \text{ kN/m}^2$			۵	۵	e	e	e	e o	e A
$IL = 7.5 \text{ kN/m}^2$	ab	abe	abe	abe	be	be	be	be	C
$IL = 10.0 \text{ kN/m}^2$	abe	abe	abe	abe	abe	abe	be	be	
VARIATIONS TO DESIGN A	SSUMPTIO	NS: differen	ces in slab	thickness	for a charad	cteristic imp	osed load (l	L) of 5.0 kN	/ <i>m</i> ²
Thickness, mm	Span, m		7.2	8.1	9.0	9.9	10.8	11.7	12.6
	2 hrs fire,	115 topping	340	340	340	340	440	440	540
	4 hrs 150	rib & topping	375	375	475	475	475	575	575
	Moderate	exposure	325	325	339	425	435	525	
Rectangular panels: economic thickness mm			525	525	545	420	440	222	
Long span, m		12.6	13.5	14.4	15.3	16.2	17.1	18.0	
	Short spa	n = 9.0 m	325	325	325	325	325	325	325
	Short spa	n = 9.9 m	325	325	335	345	350	355	360
	Short spa	n = 10.8 m	355	365	375	425	425	425	425
	Short spa	n = 11.7 m	425	425	425	425	435	450	460
	Short spar	11 = 12.6 M n = 13.5 m	450	450 575	455 575	4/5 525	525	525	525
	Shorr sha			772	772	JZJ	ررر	770	212