

(One-way joists)

ADVANTAGES

- Medium to long spans
- Lightweight
- Holes in topping easily accommodated
- Large holes can be accommodated
- Profile may be expressed architecturally, or used for heat transfer in passive cooling

Introducing voids to the soffit of a slab reduces dead weight and increases the efficiency of the concrete section. A slightly deeper section is required but these stiffer floors facilitate longer spans and provision of holes. Economic in the range 8 to 12 m.

The saving of materials tends to be offset by some complication in formwork. The advent of expanded polystyrene moulds has made the choice of trough profile infinite and largely superseded the use of standard T moulds. Ribs should be at least 125 mm wide to suit reinforcement detailing.

The chart and data assume line support (ie. beam or wall) and bespoke moulds.

DISADVANTAGES

- Higher formwork costs than for other slab systems
- Slightly greater floor thicknesses
- Slower

SPAN:DEPTH CHART

DESIGN ASSUMPTIONS										
SUPPORTED BY	BEAMS. Refer to beam charts and data to estimate beam sizes and reinforcement.									
DIMENSIONS	Square panels, minimum of three slab spans. Ribs 150 mm wide @ 750 mm cc. Topping 100 mm. Moulds of bespoke depth. Rib/solid intersection at beam span/7 from centreline of internal support, and at span/9 from end support.									
REINFORCEMENT	Maxim 0 12%)	Maximum bar sizes in ribs: 2T25B, 2T20T (in top of web) and R8 links. 25 mm allowed for A142 mesh (@ 0.12%) in topping, 10% allowed for wastage and laps, f. may have been reduced								
LOADS	A super elastic degree	A superimposed dead load (SDL) of 1.50 kN/m ² (for finishes, services, etc.) is included. Ultimate loads assume elastic reaction factors of 1.1 to internal beams and 0.5 to end beams. Self weight used accounts for 10 degree slope to ribs and solid ends as described above.								
CONCRETE	C35, 24	C35, 24 kN/m ³ , 20 mm aggregate.								
FIRE & DURABILITY	Fire res	Fire resistance 1 hour; mild exposure.								
SINGLE SPAN, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	
THICKNESS, mm										
$IL = 2.5 \text{ kN/m}^2$	250	288	334	382	434	514	610	722		
$IL = 5.0 \text{ kN/m}^2$	272	320	372	428	492	588	772			
$IL = 7.5 \text{ kN/m}^2$	294	346	406	472	594					
$IL = 10.0 \text{ kN/m}^2$	314	372	438	564						
ULTIMATE LOAD TO SUPP	PORTING BEA	AMS, INTER	RNAL (END),	kN/m	((72)	((07)	(4.05)	(426)		
$IL = 2.5 \text{ kN/m}^2$	n/a (35)	n/a (43)	n/a (52)	n/a (61)	n/a (72)	n/a (87)	n/a (105)	n/a (126)		
$IL = 5.0 \text{ kN/m}^2$	n/a (40)	n/a (56)	n/a (70)	n/a (104)	n/a (126)	11/d (110)	11/d (140)			
$IL = 10.0 \text{ kN/m}^2$	n/a (74)	n/a (89)	n/a (106)	n/a (129)	1//4 (120)					
REINEORCEMENT, ka/m ² (ka/m ³)										
$IL = 2.5 \text{ kN/m}^2$	11 (42)	12 (41)	11 (34)	11 (30)	12 (27)	12 (23)	12 (20)	12 (17)	TUICEITIEIT	
$IL = 5.0 \text{ kN/m}^2$	11 (42)	11 (36)	11 (31)	12 (27)	12 (24)	12 (20)	12 (16)	(,		
$IL = 7.5 \text{ kN/m}^2$	11 (39)	12 (34)	12 (29)	12 (25)	12 (20)					
$IL = 10.0 \text{ kN/m}^2$	11 (36)	12 (31)	12 (27)	12 (21)						
MULTIPLE SPAN, m	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	
THICKNESS, mm										
$IL = 2.5 \text{ kN/m}^2$	250	250	278	312	342	392	452	520	598	
$IL = 5.0 \text{ kN/m}^2$	250	266	302	336	3/6	440	510	590 522	688	
$IL = 7.3 \text{ kN/m}^2$ IL = 10.0 kN/m ²	258	298	342	304	414	484 588	730	152		
LITTIMATE LOAD TO SUPPORTING BEAMS INTERNAL (FND) kN/m2										
$IL = 2.5 \text{ kN/m}^2$		89 (40)	105 (48)	123 (56)	142 (65)	165 (75)	193 (88)	224 (102)	261 (119)	
$IL = 5.0 \text{ kN/m}^2$	101 (46)	122 (55)	144 (65)	167 (76)	192 (87)	223 (101)	257 (117)	297 (135)	346 (157)	
$IL = 7.5 \text{ kN/m}^2$	129 (59)	154 (70)	181 (82)	210 (96)	242 (110)	279 (127)	328 (149)	389 (177)		
$IL = 10.0 \text{ kN/m}^2$	156 (71)	187 (85)	219 (100)	254 (115)	297 (135)	348 (158)	411 (187)			
REINFORCEMENT, kg/m ² ((kg/m³)				S	lab only, ad	ld mesh and	d beam rein	forcement	
$IL = 2.5 \text{ kN/m}^2$	12 (52)	11 (45)	12 (44)	16 (51)	17 (51)	18 (46)	18 (40)	18 (35)	18 (31)	
$IL = 5.0 \text{ kN/m}^2$	12 (53) 16 (64)	16 (59) 17 (60)	16 (54) 18 (57)	18 (53) 18 (50)	18 (48)	18 (41) 18 (38)	18 (36) 19 (31)	18 (31) 18 (25)	18 (27)	
$IL = 10.0 \text{ kN/m}^2$	17 (64)	17 (59)	18 (53)	18 (46)	18 (38)	18 (31)	18 (25)	10 (23)		
DESIGN NOTES $a = q_k > 1.25 g_k$ $b = q_k > 5 kN/m^2$ $c = 2T20B$ $d = deflection critical e = designed links in ribsII = 2.5 kN/m^2$										
$IL = 5.0 \text{ kN/m}^2$	е			e	de	de	de	e	e	
$IL = 7.5 \text{ kN/m}^2$	abe	abe	abde	abde	abe	bde	be	be		
$IL = 10.0 \text{ kN/m}^2$	abe	abe	abde	abde	abe	abe	be			
VARIATIONS TO DESIGN	ASSUMPTIO	VS: differer	nces in slab	thickness f	for a charad	teristic imp	osed load (l	L) of 5.0 kN	I/m ²	
Fire resistance	2 hours, 1	50 rib & 115	topping	+5 mm 4 hours, 1			150 rib & topping see below			
Exposure Standard moulds	Moderate	Moderate		+15 mm		Severe, C40 concrete			see below	
Standard moulds	i moulds		See	e deiow		NB: 1	moulds :	125 mm ri	os @ 600	
Thickness, mm	Span, m		6.0	7.0	8.0	9.0	10.0	11.0	12.0	
	4 hrs,150 i	ib & toppin	g 258	300	338	386	442	534	600	
	Severe, C4	U concrete	248	288	326	366	416	494	576	
	T3 mould	250 deep	205	291	305 340	347 340	382			
	T4 mould.	325 deep			5-0	415	415	450		
	T5 mould,	400 deep					490	490	524	